Title: Ordinary Differential Equations

1 Classes for ODE solver

GSL::Odeiv::System
GSL::Odeiv::Step
GSL::Odeiv::Control
GSL::Odeiv::Evolve
These are GSL structure wrappers.
GSL::Odeiv::Solver
Another higher-level interface to ODE system classes.

2 Class Description

2.1 GSL::Odeiv::Step

The lowest level components are the stepping functions which advance a solution from time t to t+h for a fixed step-size h and estimate the resulting local error.

GSL::Odeiv::Step.new(T, dim)

Constructor for a stepping function of an algorithm type T for a system of dimension dim. The algorithms are specified by one of the constants under the GSL::Odeiv::Step class, as

  1. GSL::Odeiv::Step::RK2, Embedded 2nd order Runge-Kutta with 3rd order error estimate.
  2. GSL::Odeiv::Step::RK4, 4th order (classical) Runge-Kutta.
  3. GSL::Odeiv::Step::RKF45, Embedded 4th order Runge-Kutta-Fehlberg method with 5th order error estimate. This method is a good general-purpose integrator.
  4. GSL::Odeiv::Step::RKCK, Embedded 4th order Runge-Kutta Cash-Karp method with 5th order error estimate.
  5. GSL::Odeiv::Step::RK8PD, Embedded 8th order Runge-Kutta Prince-Dormand method with 9th order error estimate.
  6. GSL::Odeiv::Step::RK2IMP, Implicit 2nd order Runge-Kutta at Gaussian points
  7. GSL::Odeiv::Step::RK4IMP, Implicit 4th order Runge-Kutta at Gaussian points
  8. GSL::Odeiv::Step::BSIMP, Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm requires the Jacobian.
  9. GSL::Odeiv::Step::GEAR1, M=1 implicit Gear method
  10. GSL::Odeiv::Step::GEAR2, M=2 implicit Gear method
  11. GSL::Odeiv::Step::RK2SIMP (GSL-1.6)

The algorithm types can also be given by a String, same as the C struct name,

  1. "rk2" or "gsl_odeiv_step_rk2"
  2. "rk4" or "gsl_odeiv_step_rk4"
  3. "rkf45" or "gsl_odeiv_step_rkf45"
  4. "rkck" or "gsl_odeiv_step_rkck"
  5. "rk8pd" or "gsl_odeiv_step_rk8pd"
  6. "rk2imp" or "gsl_odeiv_step_rk2imp"
  7. "rk4imp" or "gsl_odeiv_step_rk4imp"
  8. "bsimp" or "gsl_odeiv_step_bsimp"
  9. "gear1" or "gsl_odeiv_step_gear1"
  10. "gear2" or "gsl_odeiv_step_gear2"
  11. "rk2simp" or "gsl_odeiv_step_rk2simp" (GSL-1.6)
GSL::Odeiv::Step#reset
This method resets the stepper. It should be used whenever the next use of s will not be a continuation of a previous step.
GSL::Odeiv::Step#name

Returns the name of the stepper as a String. For example,

require("gsl")
include Odeiv
s = Step.new(Step::RK4, 2)
printf("step method is '%s'\n", s.name)

would print something like step method is 'rk4'.

GSL::Odeiv::Step#order
Returns the order of the stepper on the previous step. This order can vary if the stepper itself is adaptive.
GSL::Odeiv::Step#apply(t, h, y, yerr, dydt_in, dydt_out, sys)
GSL::Odeiv::Step#apply(t, h, y, yerr, dydt_in, sys)
GSL::Odeiv::Step#apply(t, h, y, yerr, sys)
This method applies the stepper to the system of equations defined by dydt, using the step size h to advance the system from time t and state y to time t+h. The new state of the system is stored in y on output, with an estimate of the absolute error in each component stored in yerr. If the argument dydt_in is not nil it should be a GSL::Vector object containing the derivatives for the system at time t on input. This is optional as the derivatives will be computed internally if they are not provided, but allows the reuse of existing derivative information. On output the new derivatives of the system at time t+h will be stored in dydt_out if it is not nil.

2.2 GSL::Odeiv::System

GSL::Odeiv::System.new(func, jac, dim)
GSL::Odeiv::System.new(func, dim)

Constructor. This defines a general ODE system with the dimension dim.

The third argument jac is also a Proc objects, to calculate jacobian.

Note that some of the simpler solver algorithms do not make use of the Jacobian matrix, so it is not always strictly necessary to provide it. Thus the constructor is called as

sys = GSL:Odeiv::System.new(func, jac, dim)   # for "BSIMP" algorithm
sys = GSL:Odeiv::System.new(func, nil, dim)   # for others, replaced by nil
sys = GSL:Odeiv::System.new(func, dim)        # or omit
GSL::Odeiv::System#set(func, jac, parameters...)
This method sets or resets the procedures to evaluate the function and jacobian, and the constant parameters.
GSL::Odeiv::System#set_params(...)
Set the constant parameters of the function.
GSL::Odeiv::System#function
GSL::Odeiv::System#func
GSL::Odeiv::System#jacobian
GSL::Odeiv::System#jac
Return Proc objects
GSL::Odeiv::System#dimension
GSL::Odeiv::System#dim

2.3 GSL::Odeiv::Control

GSL::Odeiv::Control.standard_new(epsabs, epsrel, a_y, a_dydt)
GSL::Odeiv::Control.new(epsabs, epsrel, a_y, a_dydt)
The standard control object is a four parameter heuristic based on absolute and relative errors epsabs and epsrel, and scaling factors a_y and a_dydt for the system state y(t) and derivatives y'(t) respectively.
GSL::Odeiv::Control.y_new(epsabs, epsrel)
This method creates a new control object which will keep the local error on each step within an absolute error of epsabs and relative error of epsrel with respect to the solution y_i(t). This is equivalent to the standard control object with a_y=1 and a_dydt=0.
GSL::Odeiv::Control.yp_new(epsabs, epsrel)
This method creates a new control object which will keep the local error on each step within an absolute error of epsabs and relative error of epsrel with respect to the derivatives of the solution y'_i(t). This is equivalent to the standard control object with a_y=0 and a_dydt=1.
GSL::Odeiv::Control.new(epsabs, epsrel, a_y, a_dydt, vscale, dim)
This creates a new control object which uses the same algorithm as GSL::Odeiv::Control.standard_new but with an absolute error which is scaled for each component by the GSL::Vector object vscale.
GSL::Odeiv::Control#init(epsabs, epsrel, a_y, a_dydt)
This method initializes the controler with the parameters epsabs (absolute error), epsrel (relative error), a_y (scaling factor for y) and a_dydt (scaling factor for derivatives).
GSL::Odeiv::Control#name
GSL::Odeiv::Control#hadjust(step, y0, yerr, dydt, h)
This method adjusts the step-size h using the control function object, and the current values of y, yerr and dydt. The stepping function step is also needed to determine the order of the method. On output, an array of two elements [hadj, status] is returned: If the error in the y-values yerr is found to be too large then the step-size h is reduced and the method returns [hadj, status=GSL::ODEIV::HADJ_DEC]. If the error is sufficiently small then h may be increased and [hadj, status=GSL::ODEIV::HADJ_INC] is returned. The method returns [hadj, status=GSL::ODEIV::HADJ_NIL] if the step-size is unchanged. The goal of the method is to estimate the largest step-size which satisfies the user-specified accuracy requirements for the current point.

2.4 GSL::Odeiv::Evolve

The higher level of the system is the GSL::Evolve class which combines the results of a stepper and controler to reliably advance the solution forward over an interval (t_0, t_1). If the controler signals that the step-size should be decreased the GSL::Evolve object backs out of the current step and tries the proposed smaller step-size. This process is continued until an acceptable step-size is found.

GSL::Odeiv::Evolve.new(dim)
GSL::Odeiv::Evolve.alloc(dim)
These create a GSL::Evolve object for a system of dim dimensions.
GSL::Odeiv::Evolve#reset
This method resets the GSL::Evolve object. It should be used whenever the next use of e will not be a continuation of a previous step.
GSL::Odeiv::Evolve#apply(evolve, control, step, sys, t, t1, h, y)
This method advances the system sys from time t and position y using the stepping function step. The initial step-size is taken as h. The maximum time t1 is guaranteed not to be exceeded by the time-step. On output, an array of three elements is returned, [tnext, hnext, status], where tnext is the time advanced, hnext is the step-size for the next step, and status is an error code retunred by gsl_odeiv_evolve_apply() function. On the final time-step the value of tnext will be set to t1 exactly.
GSL::Odeiv::Evolve#count

2.5 GSL::Odeiv::Solver

This is the highest level interface to solve ODE system, which contains System, Step, Control, and Evolve classes.

GSL::Odeiv::Solver.new(T, cary, fac, jac, dim)
GSL::Odeiv::Solver.new(T, cary, fac, dim)
This creates a ODE solver with the algorithm type T for the system of dimention dim. Here cary is an array as an argument for the GSL::Odeive:Control constructor.
GSL::Odeiv:::Solver#reset
Reset the solver elements (step, evolve)
GSL::Odeiv:::Solver#step
GSL::Odeiv:::Solver#control
GSL::Odeiv:::Solver#evolve
GSL::Odeiv:::Solver#system
Access to the solver elements.
GSL::Odeiv::System#set_params(...)
Set the constant parameters of the function to solve.
GSL::Odeiv:::Solver#apply(t, t1, h, y)
This method advances the system from time t and position y (GSL::Vector object) using the stepping function. On output, the new time and position are returned as an array [tnext, hnext, status], i.e. t, y themselves are not modified by this method. The maximum time t1 is guaranteed not to be exceeded by the time-step. On the final time-step the value of tnext will be set to t1 exactly.

3 Example

The following program solves the second-order nonlinear Van der Pol oscillator equation, as found in the GSL manual, x"(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0,

This can be converted into a first order system suitable for use with the routines described in this chapter by introducing a separate variable for the velocity, y = x'(t),

prev next

Reference index top